
Exact separation of a three-body problem in one dimension

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 257

(http://iopscience.iop.org/0305-4470/22/3/010)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 07:46

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 22 (1989) 257-267. Printed in the UK 
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Abstract. It is shown that the problem of three equal-mass particles moving in one 
dimension, and interacting through anharmonic two-body forces, is exactly separable in 
hyperspherical coordinates. It is further proved, under mild conditions, that this is the 
most general ‘well behaved’ two-body force for which separation is possible. Some typical 
spectra are calculated numerically, and compared with analytic expressions based upon 
the semiclassical approximation. 

1. Introduction 

It is well known that, in general, the three-body problem in classical and quantum 
mechanics cannot be solved exactly by any currently known technique. Indeed, even 
the two-body problem can only be solved exactly because the introduction of centre-of- 
mass and relative coordinates allows it to be rewritten in the form of two one-body 
problems. However, there are a few special cases, involving simplified interactions 
and restrictions to one-dimensional motion, for which exact solutions of the three-body 
problem may be determined. McGuire (1964) has shown that the problem of N 
equal-mass particles moving in one dimension and interacting through equal and finite 
strength pairwise delta function potentials is susceptible to exact solution. The three- 
body problem is also exactly soluble for the one-dimensional motion of equal-mass 
particles interacting through two-body harmonic forces. In this connection, the 
introduction of hyperspherical coordinates provides a particularly elegant and con- 
venient tool to effect the solution (Amado and Coelho 1978, Ballot and Fabre de la 
Ripelle 1980). 

In this paper, we show that the problem of three equal-mass particles moving in 
one dimension, and interacting through anharmonic two-body forces, is also exactly 
separable in hyperspherical coordinates. Furthermore, we prove that this anharmonic 
form is the most general two-body force for which separation is possible. Finally, we 
present some typical spectra (calculated numerically) and, in the case of a pure r4 
potential, compare them with some approximate analytic expressions for the energy 
levels of the system derived from the semiclassical W K B  method. 
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2. One-dimensional three-body problem with anharmonic forces 

Consider three particles of equal mass, m,  moving in a single spatial dimension, and 
interacting through two-body potentials of the form 

V ( X , ,  x , ) =  ( Y ( x i - x j ) 2 + p ( x i - x , ) 4  ( 2 . 1 )  

where the xi label the positions of the particles with respect to some arbitrary origin. 
The strength (Y of the quadratic potential may be either positive or negative, but we 
only allow the strength p of the quartic potential to be positive, so as to ensure 
confinement. We wish to solve the time-independent Schrodinger equation for the 
wavefunction $ of the three-particle system: 

2 m  

It is convenient to rewrite the particle coordinates with explicit reference to the 
centre of mass of the system, X = (x, + x2 + x 3 ) / 3 ,  in terms of the hyperspherical radius 
and angle, p and 0 respectively. Thus 

- 
r ,  = x1 - x = J i p  cos( e - 2 4 3 )  

r2 = x2-x = J + p  C O S ( ~ + ~ T / ~ )  

r3 = x3 - x = J’ 3P COS(6). 

( 2 . 3 )  

(2.4) 

(2 .5 )  

- 

These relations give equally convenient forms for the relative coordinates of any two 
particles: 

r ,  - r2 = x 1  - x2 = v 5 p  sin( e) 
r 2 -  r3 = x2 - x 3  = v 5 p  sin( e - 2 4 3 )  

r3 - rI = x3 - x 1  = v 5 p  sin( e + 2 4 3 ) .  

( 2 . 6 )  

( 2 . 7 )  

(2.8) 

By construction, we know that 2.;’=1 r, = 0. It is also easy to confirm that rf = p2,  
which is what motivated our choice of hyperspherical coordinates. However, a rather 
more curious identity, which was not foreseen but is at the heart of our ability to 
separate the Schrodinger equation in this case, is 

3 

1 r ; = t p 4 .  (2.9) 
, = I  

With this information, we can return to ( 2 . 2 )  and simplify the potential by writing 

( x , - x , ) ’ = t  ( r , - r , l 2 = +  C ( r ;+r : -2r , r , )  
3 3 3 

I s J = l  ’,, = 1 I , J = l  

and similarly 
3 3 3 

( X ~ - X , ) ~ = ~  ( r i - r j ) 4 = f  (r4+rr,4-4r:r j -4rir j3+6rfr~)  
i S j = l  i , j = l  i , j = l  

( 2 .10 )  

3 
= 3  r4+3 rf =4p4. 

i = l  ( i : ,  ) 2  
(2.11) 
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Equations (2 .3) - (2 .5)  make it clear that we can write the differential element, ds, as 

(ds)’ = (dx,)’ + (dx2)’ + (dx,)’ = 3(dX)2 + (dp)’ + p2(d6)2. (2 .12)  

The corresponding Laplacians are 

a’ a’ a’ 
ax: axz dx, 

1 8 ’  1 8  1 d2 

V’ = -+,+ 2 

- ---+-- 38x2 p a p (  p- a:) +T7 p a e  (2.13) 

and (2 .2)  is clearly separable, since the potential only depends on the single coordinate 
p. If we write our wavefunction 4( p, 6, X)  as 

4 ( P ,  e , w =  U ( P ) w ( e ) y ( x )  (2 .14)  

the standard separation procedure leads immediately to the following three second- 
order ordinary differential equations. Firstly 

- h 2  d’Y 
2 m  d X Z  - E C M  y (2 .15)  

describes the motion of the centre of mass of the system, with the separation constant 
labelled as ECM. Secondly 

- h 2  d2 W 
(2 .16)  

describes the behaviour of the hyperspherical angular motion. If our particles have 
equal masses but are not identical, such as would be the case for three quarks of the 
same flavour but different colour, then the requirement that a ‘rotation’ of 27r should 
leave our system in the same physical state leads to the constraint 

a = h212/2m (2.17)  

where 1 = 0, * l ,  * 2 , .  . . . If, on the other hand, the particles are identical, then the 
state of the system must remain unchanged by a ‘rotation’ of 27r/3 and we would have 
the alternative condition a ‘ = 9 h 2 1 2 / 2 m .  Throughout the rest of this paper we shall 
use the relation of (2 .17)  since it generates a richer spectrum of states while at the 
same time encompassing the more symmetric case of three identical particles. Finally 

- h 2 1  d - - - ( p %q + [$p4 + 3ap2 - ( E  - ECM) + h’ l2 /2mp2]  U = 0 
2 m  P d P  

(2 .18)  

describes the ‘radial’ motion of the three-body system. 
We have thus shown that the problem of three equal-mass particles moving in one 

dimension, and interacting through anharmonic two-body forces, is exactly separable 
in hyperspherical coordinates. 

3. Functional equations for the three-body problem in one dimension 

In this section we seek to find the most general form of the two-body potential for 
which the equal-mass three-body problem in one dimension is separable. We shall 
use the technique of functional equations, and in so doing require that the first- and 
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second-order derivatives of our desired functions exist. We shall therefore not be able 
to say anything about delta function or other ‘badly behaved’ potentials which do not 
possess such derivatives, but may nevertheless also conceivably lead to separable 
problems. 

To guarantee separation we wish to find the most general two-body potential such 
that X:==j=l u(r i  - r j )  = U( p ) .  In this case, when we write the equations of the three-body 
problem in terms of the hyperspherical coordinates p and 8 they will decouple, enabling 
us to obtain an exact solution. Using the relations of equations (2.6)-(2.8) this is 
equivalent to trying to find functions f and g such that 

3 
f [ p  s i n ( 8 - 2 ~ ~ / 3 ) ] = g ( p ) .  

K = l  
(3.1) 

Let us begin by setting 0 = 0 in (3.1). Then 

f ( 0 )  +f(J7p/2)  +f(-J7p/2) =‘id P )  (3.2) 

g ( p )  = g(-p). (3.3) 

which leads to the conclusion that g must be an even function of p :  

Now, separate the function f into symmetric and antisymmetric parts S and A respec- 
tively: 

f ( x )  = S ( X )  + a x )  (3.4) 

where S(x)  = S ( - x )  and A(x) = -A(-x). Conversely 

and 

Substitution of these relations into (3.1) leads to 
3 3 

1 S [ p  s i n ( 8 - 2 ~ ~ / 3 ) ] +  C A [ p s i n ( @ - 2 ~ ~ / 3 ) ] = g ( p ) .  (3.7) 
K = l  K = l  

However, since we already know that g must be an even function of p we can write 
separately 

3 

A[ p sin( 8 -2TK/3)] = 0 

C S [  p sin( 8 -277~/3)] = g( p ) .  

K = l  

3 

K = l  

(3.8) 

(3.9) 

To begin with, we concentrate on the antisymmetric function A. Setting 8 = ~ / 2  

(3.10) 

in (3.8) and writing the terms of the sum explicitly gives 

A( p )  + 2A( -p/2) = 0. 

This, in turn, implies that A( p )  = 2A( p/2), which has the linear solution 

A( P )  = ap (3.11) 

where a is an arbitrary constant. 
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The symmetric function, S, may be found by taking first and second derivatives of 
(3.9) with respect to p and 8, respectively, as follows; 

3 

C sin(@ - 2 7 ~ ~ / 3 ) S ’ [ p  sin(6 - 2 7 ~ ~ / 3 ) ]  = g’(p)  
K = l  

(3.12) 

- p  s i n ( 8 - 2 7 ~ ~ / 3 ) S ’ [ p  s i n ( 6 - 2 7 ~ ~ / 3 ) ] ) = 0  

(3.14) 

(3.15) 

where the primes denote successive derivatives of the functions. Multiplying (3.12) 
by p, (3.13) by p2 and then adding the two resultants to (3.15) leads to 

3 

p2 s”[ p sin(8 - 2 7 ~ ~ / 3 ) ]  = p2g”( p )  + pg’( p).  (3.16) 

Writing out the terms in the above sum explicitly for 8 = 0, and using the symmetric 
nature of S, 

K = l  

S”(0) + 2Sf’(&p/2) = g”( p )  + g’( p)/p. (3.17) 

Let us return momentarily to (3.9) and there also write out the terms of the sum 
explicitly when 8 = 0: 

S(0) +2S(&p/2) = g( P I .  (3.18) 

Differentiating this with respect to p yields 

g’( p )  = &S’(&p/2) (3.19) 

and 

gl’(p) = 3S“(&p/2)/2 (3.20) 

which may be substituted in (3.17). Thus 

S”(0) + 2S”(&p/2) = 3 S ” ( & p / 2 ) / 2 + & S ’ ( J 3 p / 2 ) / p .  (3.21) 

For convenience, let us write x =&p/2, so that 

S”(x)-3S’(x)/x+2S”(O) = o  
for which an integrating factor of l / x 3  is readily found. This leads to 

d S‘(x) 2 -& (7) +x’ S’YO) = 0 

which may be straightforwardly integrated twice to obtain S(x). Therefore 

(3.22) 

(3.23) 

S ‘ ( X )  S”(0) 
7 + x , = b  (3.24) 
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where b is a constant of integration, and finally 

+ C  
bx4 S”(0)x2  

S ( x )  =-+- 
4 2 (3.25) 

where c is a second constant of integration. 
Bearing in mind that our antisymmetric function, A ( x )  = ax, will not contribute to 

the total potential when summed over all particles, we can claim to have shown that 
the most general form of two-body potential, J ;  possessing first and second derivatives, 
which can lead to a separable three-body problem in one dimension, has the anharmonic 
form 

(3.26) 

This peculiar result does not appear to generalise to more than three particles or to 
motion in two or three dimensions. 

f ( x )  = CO+ c 2 x 2 +  c 4 x 4 .  

4. Some examples of the associated spectra 

To calculate the energy levels of our one-dimensional three-body system we must solve 
the ‘radial’ equation given by (2.18). To simplify the appearance of this equation, let 
us define a new radial function, x = u / G ,  which will allow us to eliminate the first 
derivative and so write 

where E = 2m(E - ECM)/ h2, A = 9mp/ h2  and B = 6ma/  h 2 .  In general, no analytic 
solutions of this equation are known and the eigenvalue, E ,  must be found numerically. 
The requirement that the wavefunction remain finite at the origin and approach zero 
as p approaches infinity allows us to identify the limiting behaviour of x at small and 
large p. Near the origin x - P‘”’~, and at the other extremity, ,y - exp( - f i p 3 / 3 )  as 
p + m .  If, however, A=O but B > O  then the asymptotic behaviour is x -  
exp( - a p 2 / 2 ) .  With these boundary conditions, numerical solutions of (2.18) may 
be found by standard techniques (a shooting method based on a Pruefer transfor- 
mation). 

To get some feeling for the spectra generated by the anharmonic potential we shall 
investigate some particular cases. They are (i) A = 0, B > 0 (which is the equation 
describing the two-dimensional simple harmonic oscillator), (ii) A > 0, B = 0 (for which 
approximate analytic expressions for the energy levels have been obtained within the 
semiclassical approximation) and (iii) A > 0, B f 0. 

4.1. A=O, B > O  

In this case (4.1) reduces to the well known form 

(4.2) 

which describes a two-dimensional simple harmonic oscillator and has analytic sol- 
utions. It is actually identical in form to the equation describing a three-dimensional 
simple harmonic oscillator except that here the centrifugal potential takes the form 
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(I’-a)/p2 instead of 1 ( 1 + l ) / p 2 = [ ( l f & ) ’ - $ ] / p 2 .  Hence, the well known results for 
the three-dimensional case can be converted to this problem by simply making the 
substitution 1 +&+ 1. In particular, the energy levels are given by E (  n, I )  where 

~ ( n ,  1 )  = 2 0 ( 2 n  + I +  1) (4.3) 

and n is the number of interior nodes in the radial wavefunction. This analytic result 
also allows us to check our numerical methods against a known spectrum, and so 
confirm their correct functioning. 

All levels of non-zero 1 are doubly degenerate because (4.1) depends only on I* 
and so is not sensitive to the difference between *l. Clearly, in this special case, states 
with the same value of N = 2n + 1 are ‘accidentally’ degenerate. 

4.2. A > B, B = 0 

We now consider a pure p4 power-law potential. Although no analytic solutions of 
the radial wave equation are known in this case, several approximate analytic 
expressions for the energy levels, based on the WKB method, have been proposed. In 
table 1 we compare our numerical results with two such approximate formulae. 

The Quigg and Rosner (1979) formula for a general p s  potential is 

where, in our case, s = 4, U = n +& and A = 1, giving explicitly 

This expression has the same ‘accidental’ degeneracies as the two-dimensional simple 
harmonic oscillator, since it only depends on the single quantum number N = 2n + 1, 
and cannot therefore give a completely adequate description of the true spectrum, in 
which these degeneracies are lifted. Nevertheless, table 1 shows that it does give a 
good approximation to the energies of all of the low-lying states of the spectrum 
considered here. 

Another approximate formula has been derived by Buck and Spiers (1979) within 
the framework of the WKB approximation. For a p s  potential their result is 

(4.6) 

which in our case becomes 

This expression does not retain the harmonic oscillator degeneracies and is expected 
to be particularly accurate for states having large 1 and small n, which is borne out by 
table 1. 

Figure 1 shows the numerically calculated spectrum for the parameter value A = 1 
so that the radial equation now takes the simple form 
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Table 1. A comparison of the numerically calculated energies of the low-lying states in 
the potential V ( x )  = x4 with the analytic approximations of Quigg and Rosner (1979) (QR)  

and Buck and Spiers (1979) (BS). 

1 n 

0 

1 

2 

3 

4 

5 

6 

1 

8 

9 

0 
1 
2 
3 
4 

0 
1 
2 
3 
4 

0 
1 
2 
3 

0 
1 
2 
3 

0 
1 
2 

0 
1 
2 

0 
1 

0 
1 

0 

0 

QR 

2.185 
9.454 

18.68 
29.26 
40.91 

5.506 
13.87 
23.82 
34.96 
47.08 

9.454 
18.68 
29.26 
40.91 

13.87 
23.82 
34.96 
47.08 

18.68 
29.26 
40.91 

23.82 
34.96 
47.08 

29.26 
40.91 

34.96 
47.08 

40.91 

47.08 

BS Numerical 

2.476 
10.71 
21.17 
33.16 
46.36 

5.489 
14.77 
25.90 
38.42 
52.05 

9.004 
19.13 
30.83 
43.86 

12.91 
23.75 
36.03 
49.47 

17.13 
28.61 
41.39 

21.64 
33.68 
46.93 

26.40 
38.96 

31.38 
44.42 

36.56 

41.94 

2.345 
9.528 

18.74 
29.30 
40.94 

5.394 
13.81 
23.78 
34.92 
47.04 

8.928 
18.31 
28.96 
40.66 

12.84 
23.03 
34.30 
46.51 

17.08 
27.96 
39.81 

21.59 
33.10 
45.46 

26.35 
38.42 

3 1.34 
43.91 

36.52 

41.91 

We see that the simple harmonic oscillator degeneracies are broken in such a way that, 
for a given value of N = 2 n + l ,  the states of higher 1 have lower energies. This is 
essentially due to the curvature of the potential. Baumgartner et al (1984, 1985) have 
shown that, if (d/dp’)’V( p )  > 0, for all p, then E , , >  Our results are certainly 
in line with these two inequalities, since we have (d/dp2)*p4 = 2 and the energy level 
ordering in figure 1 is clearly in agreement with the consequences predicted. 

4.3. A >  0, B # 0 

Figures 2 and 3 show our numerical determinations of the energies of the low-lying 
states generated by the potentials V( p )  = Ap4* Bp’. We have chosen the constants so 
that A = 1 and B = *4 for convenience. The spectra display similar patterns to those 
of the pure p4  potential, but exhibit a little more spread in energy when B = 4 and 
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0 2 4 6 a 
i values 

Figure 1. The energies of the low-lying states generated by the potential V ( x )  = x4. The 
states having I = 0 are unique, whilst those having I # 0 are doubly degenerate. Note that 
the 'accidental' degeneracy between states having the same values of N = 2 n  + \ associated 
with the simple harmonic oscillator is only lightly lifted. 

60 

40 

W 

20 

0 

- 10 
0 2 4 6 8 

i values 
Figure 2. The energies of the low-lying states generated by the potential V ( x )  = x'+4x2.  
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I I I I I I I I I I  I 

0 

0 

0 
0 

0 

e 

0 2 4 6 8 

1 values 

Figure 3. The energies of the low-lying states generated by the potential V ( x )  =x4-4x2. 
Note that it is possible to generate states with E 0 in this case. 

slightly more compression when B = -4. We also note that when B = -4, it is possible 
to generate states with negative energy; i.e. bound in the local minimum of the potential 
near the origin. 

5. Conclusions 

We have shown that the equations governing the one-dimensional motion of three 
equal-mass particles interacting through anharmonic forces are separable, and hence 
exactly soluble, in hyperspherical coordinates. We have further shown by functional 
equations that the anharmonic potential V ( x )  = CO+ C,x2+ C4x4 is the most general 
one for which such a separation occurs. Finally, we have numerically calculated the 
spectra generated in some typical cases and compared these energies with the predic- 
tions of some analytic approximations in the special case of a pure, V ( x )  = x 4 ,  
power-law potential. 

Tables of the exact energies of the low-lying states generated by the potentials 
V ( x )  = x4* 4x2 may be of use to other authors in checking the accuracy of alternative 
methods of solution of the three-body problem and are available on request. 
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